
Problem 6, EGMO 2013 and coding theory

Zsuzsa Baran

Snow White and the Seven Dwarves are living in their house in the forest. On
each of 16 consecutive days, some of the dwarves worked in the diamond mine while
the remaining dwarves collected berries in the forest. No dwarf performed both types
of work on the same day. On any two different (not necessarily consecutive) days,
at least three dwarves each performed both types of work. Further, on the first day,
all seven dwarves worked in the diamond mine.
Prove that, on one of these 16 days, all seven dwarves were collecting berries.

Just reading this problem it is not really clear what to expect - it is number 6, so
it should probably be difficult, but the text itself looks relatively tame and it even
has dwarves in it... This problem is interesting in itself, but as it will turn out, its
solution also has some nice connection to coding theory. Let us first briefly present
(or recall) the solution of the original problem and then talk a bit more about its
context.

Solution:1 We should start by establishing some notation.
We know that on each day each dwarf performed one of two given types of works,

so we could enumerate the dwarves 1 to 7 and encode the work assignment of a
given day by a sequence of 7 characters where the kth character denotes the type
of work the kth dwarf was doing that day. It will be convenient to use characters
0 and 1, say 0 standing for work in the mine and 1 meaning berry collection in the
forest.

Using this language, we can phrase the problem as follows. We have 16 sequences
of length 7 where each entry is 0 or 1 such that any two sequences differ in at least 3
entries and the first sequence is 0000000. We wish to show that one of the sequences
is 1111111.

Let V = {0, 1}7 denote the set of 0− 1 sequences of length 7. Let us call the 16
sequences induced by the work assignments day-sequences. Let the number of 1s
in a sequence be called the weight of that sequence and let us say that a sequence
x ∈ V covers y ∈ V if they differ in at most one entry. Note that every x ∈ V
covers exactly 8 sequences. Also note that any two day-sequences differ in at least
3 entries, so they cover disjoint sets of sequences. Therefore the 16 day-sequences
together cover 16 · 8 = 27 sequences, i.e. the whole of V .

We know that 0000000 is a day-sequence, therefore there is no day-sequence of
weight 1 or 2. Therefore all

(
7
2

)
= 21 sequences in V of weight 2 should be covered

by day-sequences of weight 3. Each day-sequence of weight 3 covers exactly 3
sequences of weight 2. Therefore there should be 7 day-sequences of weight 3.

Then out of the
(
7
3

)
= 35 sequences of weight 3 only the 7 day-sequences are

covered so far. The remaining 28 should be covered by day-sequences of weight 4.
Each day-sequence of weight 4 covers 4 sequences of weight 3, hence there should
be exactly 7 day-sequences of weight 4. Note that these together cover all the se-
quences of weight 5, so there cannot be any day-sequences of weight 5 or 6. So the
last day-sequence should have weight 7, i.e. it should be 1111111. This proves the
required statement.

Remark: Note that we did not actually prove that 16 day-sequences with the
required property exist, we only proved that assuming they exist, sequence 1111111
should be one of them. From the above solution with a bit of work we can find 16
day-sequences with the required properties:

1Heavily based on solution 1 from the EGMO 2013 solutions document https://www.egmo.

org/egmos/egmo2/solutions.pdf

1

https://www.egmo.org/egmos/egmo2/solutions.pdf
https://www.egmo.org/egmos/egmo2/solutions.pdf


0000000 1110000 1001100 1000011 0101010 0100101 0010110 0011001
1111111 0001111 0110011 0111100 1010101 1011010 1101001 1100110

We will not prove it here, but this collection is actually unique up to reordering
the entries.

Broader context: You may have come across the above collection of 16 se-
quences before as they form the so-called Hamming(7,4) code. Let us take a step
back and talk a bit about codes in general.

A basic problem coding theory is concerned about is transferring some messages
by sending binary bits. We choose a certain code length n and a set of possible
messages A and to each message in A we assign a 0− 1 sequence of length n, called
a codeword.

For example, we can let the code length be 2, the set of possible messages
be A = {yes, no,maybe} and let 00 mean yes, 11 mean no and 01 mean maybe
(sequence 10 has no meaning). When we talk about a code, we often do not
actually write out what the possible messages are and which codeword is assigned
to which, just give the set C of codewords, i.e. the set of sequences that carry
meaning. In the above example the set of codewords would be C = {00, 01, 11}.

There are two competing properties we would really like our code to have. Firstly
we want it to be efficient, i.e. be able to send many messages with a given code
length. Secondly we want it to be robust to potential errors in the transmission,
i.e. we want our messages to still be decodable if a few bits get lost or change on
the way.

If we just want to be able to send as many different messages as possible, we
can let each of the 2n sequences encode a different message (i.e. let C = {0, 1}n),
but then losing even one bit will make our message undecodable and changing a
bit will completely change the message.

If we want our code to be very robust to errors, we can for example choose to send
two different messages only, one encoded by a sequence of 0s and the other encoded
by a sequence of 1s (i.e. C = {00 . . . 0, 11 . . . 1}). Then changing up to bn−1

2 c bits
we can still correctly recover the original message, but the obvious drawback is that
we used n bits to send one of two possible messages, i.e. 1 bit worth of information.

In practice we usually want something inbetween these two extremes, but it
depends on the exact context (e.g. how noisy is the channel where we transmit)
where we wish to find the balance.

We measure how efficient our code is by its rate. A code that transmits one of
2k possible messages 2, i.e. k bits worth of information in codewords of length n is
said to have rate k

n .
We can measure the reliability of a code by looking at what is the maximum

number of bits that can change so that we can still correctly decode the message.3

For example a 2-error correcting code means that if any of up to two bits change,
we can still decode. Notice that being d-error correcting means exactly that any
two codewords differ in at least 2d + 1 entries. Another way of saying that is that
the minimal distance of the code is at least 2d + 1, where the minimal distance
means the smallest distance appearing between two codewords and the distance of
two sequences is defined simply as the number of entries where they differ.

We can see that the 16 day-sequences from the problem form a code of length
7 with minimal distance 3. This means that the code has rate 4

7 and it is 1-error
correcting.

2or anything between 2k−1 and 2k

3If we receive a sequence that is not a codeword, we will try to decode it as the codeword that
differs from it in the least possible number of entries.

https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/Coding_theory


Is it the best we can get? And what does even best mean? We cannot ask for
large rate AND large error correction rate at the same time, but we may ask that
if we want a given code length n and given error correction d, then what is the
maximal rate we can achieve. Or vice versa, if we want a given code length n and
a given rate, what is the maximal error correction we can hope for? While there
are no exact answers in general, there are some bounds and one of them looks a lot
like what we did in the solution of the dwarf problem.

Say we want our code to have length n and be d-error correcting. Let us say
that a sequence x ∈ {0, 1}n covers y ∈ {0, 1}n if they differ in at most d entries. We
can note that any given sequence covers exactly 1 +

(
n
1

)
+
(
n
2

)
+ . . .+

(
n
d

)
sequences

and also that no sequence can be covered by two different codewords in a d-error
correcting code. So the codewords cover disjoint sets and together they can cover
at most 2n sequences. This means that the number of codewords can be at most

2n

1+(n
1)+(n

2)+...+(n
d)

. 4

This bound often cannot be achieved, as often the fraction is not even an integer,
but in case of 1-error correcting codes of length 7 this bound gives 16, which is
achieved by our code of day-sequences. So our code is optimal in the sense that it
contains as many codewords as possible given its length and error correction.

Another interesting property of our code worth discussing is that it is a so-called
linear code. Linear codes are a special type of code that are often used because they
have nice structure and are much easier to handle than just an arbitrary collection
of sequences.

For any two sequences in {0, 1}n we can define their sum by simply adding them
entry-wise and then taking the results mod 2. (So for example 1011+1100=0111.)
A linear code of length n is some set C ⊂ {0, 1}n of codewords such that the sum
of any two (not necessarily different) codewords is also a codeword.5 For example
we can easily check that

C = {0000, 1001, 0110, 1111}
is a linear code of length 4.

Note that in our example 0000 was a codeword. This is not a coincidence – since
the sum of any sequence with itself will be 00 . . . 0, any linear code should contain
00 . . . 0 as a codeword. We may also notice that once we knew 1001 and 0110 were
codewords we could be sure that 1111 is also a codeword, since it is their sum.

It is also true in general that if we knew some codewords are in our linear code,
we also know that their sums are also in the code. Therefore we can describe
a linear code without needing to list all its elements, by giving only a few well-
chosen codewords. In general it is always possible to choose some subset B of the
codewords such that any codeword can be written as the sum of some elements of
B (so we can obtain all elements of C just from B), but no element of B can be
written as the sum of some other elements of B (so we cannot throw out an element
of B and still have this property). A set B like that is called a basis for the code
C. The basis B is not unique6, e.g. in our above example we could have chosen
B = {1001, 0110} or B = {1001, 1111} or B = {0110, 1111}. But it is true that all
possible bases B have the same size k, called the rank of the code.

If we have a code of length n and rank k, how many elements will it have? We
know every codeword is the sum of some basis elements and there are 2k possible

4 Then of course the rate can be at most 1
n

log2

(
2n

1+
(
n
1

)
+
(
n
2

)
+...+

(
n
d

)
)

. This is called the

Hamming bound.
5For those familiar with linear algebra: C is a linear subspace of the vector space Fn

2 .
6unless our code C has only two elements

https://en.wikipedia.org/wiki/Linear_code


ways to write down some sum of elements of B (including the empty sum which is
defined to be 00 . . . 0). But will these summations all give different sequences or is
it possible that some sequence in C is counted twice, because it can be written in
two different ways as sums of basis elements? It turns out that the 2k sums all have
different results, so if a code has rank k, then it will have exactly 2k elements.7

E.g. in our above example with basis B = {1001, 0110} the possible sums are
the empty sum = 0000; 1001; 0110; 1001 + 0110 = 1111. So indeed C has rank 2
and the number of its elements is 22 = 4.

We had a lot of definitions, so let us just recap what we had so far. A linear
code of length n is given by a set C ⊂ {0, 1}n of codewords such that the sum of
any two codewords is also a codeword. For any linear code C there exists some
well-chosen subset B ⊂ C such that all elements of C can be written as the sum
of some codewords in B, but no element of B can be written as the sum of some
other elements of B. Such a B is called a basis of the code C and in general it is
not unique, but all bases have the same size, called the rank of the code C. Each
element of C can be written uniquely as a sum of basis elements, therefore if the
rank of C is k, then C will have 2k elements.

So one reason why linear codes are nice is that we do not have to list all their
elements, it is enough to write down a basis. We often write the sequences in the
bases under each other to form a table, called the generator matrix of the code.
This table will have as many columns as the code length and as many rows as the
rank of the code.

Our code of day-sequences is also a linear code and a possible basis is

{1110000, 1001100, 0101010, 1101001}

with corresponding generator matrix G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

.

Another nice thing about linear codes is that we do not have to check all pairs of
sequences to find the minimum distance, it is enough to check the distance of each
sequence from 00 . . . 0, i.e. the weight of each sequence. Do you see why? (Why is
it the case that if a linear code contains sequences x and y which are of distance d
from each other then there will also be a sequence z which is distance d away from
00 . . . 0?)

Finally let us talk about two more ways to think about our code.
We know it has 16 elements, i.e. it can transmit 4 bits worth of information, but

by looking at the generator matrix or the collection of codewords, we cannot really
see 4 bits where that information lives.

By closer inspection though we may notice the following. If we want to write
down a codeword x, we can choose x3, x5, x6 and x7 arbitrarily, but then our hands
are tied in choosing the rest of the entries. If x is a codeword, then x1 should be the
sum of x3, x5 and x7, while x2 should be x3+x6+x7 and x4 should be x5+x6+x7,
all of the sums considered mod 2 of course.

For example we can choose x3 to be 1 by adding the first row of the generator
matrix to the sum and we can choose it to be 0 by not adding the first row. (For
convenience let us just call the rows of the generator matrix b1, b2, b3, b4.) Similarly
x5 is 1 if and only if b2 is included in the sum, x6 is 1 if and only if b3 is included

7Can you actually prove this? Can you prove that a linear code cannot have for example
(non-zero) elements x, y, z, w, u such that x + y + z = w + u? Once we have that it follows that a

linear code with a basis of size k has 2k elements and using this we can conclude that all bases of
a linear code have the same size. It is a more difficult problem to show that a basis even exists...



and the x7 is 1 if and only if b4 is included. Then when we want to find x1, each of
b1, b2 and b4 adds 1 to it and similarly for the 2nd and 4th entries.

So we can say that entries 3, 5, 6, 7 are where we are actually sending our
message and the rest of the entries are just their to add extra checks to make the
code more robust to errors, they are so-called parity check bits.

Now let us see the last, somewhat related way to look at our code.
We have noticed that the codewords are exactly those x ∈ {0, 1}7 where

x1 = x3 + x5 + x7 (mod 2)

x2 = x3 + x6 + x7 (mod 2)

x4 = x5 + x6 + x7 (mod 2).

We could rearrange these equations as

x1 + x3 + x5 + x7 = 0 (mod 2)

x2 + x3 + x6 + x7 = 0 (mod 2)

x4 + x5 + x6 + x7 = 0 (mod 2)

which if you are familiar with matrices can be written as

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1




x1

x2

x3

x4

x5

x6

x7


=



0
0
0
0
0
0
0


(mod 2).

The matrix on the left is called the parity check matrix of the code. In general
the codewords of a code with parity check matrix H are exactly those x ∈ {0, 1}n
which satisfy Hx = 0 (mod 2). We can check that any code defined with a parity
check matrix is linear, but the converse is also true, any linear code can be defined
via a parity check matrix!

Notice that our code had length 7 and its generator matrix had 4 rows, whereas
its parity check matrix had 3 rows. This makes sense: we are sending 7 bits in
total, we had 4 bits to choose freely and 3 bits completely constrained. In general
it is also true that if the codewords are length n and the rank is k, then we have ’k
bits worth of free choice’, so we have ’(n− k) bits worth of constraints’, the parity
check matrix has (n− k) rows.

So giving its parity check matrix is yet another way to specify a linear code.
By now you may have wondered where the name Hamming(7,4) is coming from

and may have guessed - correctly - that 7 refers to the code length and 4 refers to
the rank.8 There are more Hamming codes with other lengths and ranks, which are
defined via their parity check matrix. For any d ≥ 3 the Hamming(n, n− d) code,
where n = 2d − 1 has a d × n parity check matrix whose columns are exactly the
non-zero element of {0, 1}d. (The code is only defined up to reordering the entries
of the codewords.)

We can see that our code also satisfies this definition and with some work can
check that each of these Hamming codes has minimum distance 3.

There are numerous other things to say about the collection of these 16 day-
sequences, but we will conclude our discussion here. We deviated very far from the
original EGMO problem, but I hope if nothing else, it could show how it is a part
of a much larger system and how revisiting this problem years later - like I did -
might make you think ’Oh wait, I actually know what this is!’.

8Hamming refers to the American mathematician Richard W. Hamming.

https://en.wikipedia.org/wiki/Parity-check_matrix
https://en.wikipedia.org/wiki/Richard_Hamming


Exercises from the text:

(1) Show that if B is a basis for code C, then any element of C can be written
uniquely as a (possibly empty) sum of elements of B. Deduce that if B has
k elements then C has size 2k.

(2) Use this to show that all bases of C have the same size.
(3) Show that if a linear code contains two sequences of distance d, then it also

contains a sequence of weight d.
(4) Show that any code defined via a parity check matrix (i.e. C consists of all

x satisfying Hx = 0 for some given matrix H) is linear.


